Corticosterone controls the developmental emergence of fear and amygdala function to predator odors in infant rat pups.

نویسندگان

  • Stephanie Moriceau
  • Tania L Roth
  • Terri Okotoghaide
  • Regina M Sullivan
چکیده

In many altricial species, fear responses such as freezing do not emerge until sometime later in development. In infant rats, fear to natural predator odors emerges around postnatal day (PN) 10 when infant rats begin walking. The behavioral emergence of fear is correlated with two physiological events: functional emergence of the amygdala and increasing corticosterone (CORT) levels. Here, we hypothesize that increasing corticosterone levels influence amygdala activity to permit the emergence of fear expression. We assessed the relationship between fear expression (immobility similar to freezing), amygdala function (c-fos) and the level of corticosterone in pups in response to presentation of novel male odor (predator), littermate odor and no odor. CORT levels were increased in PN8 pups (no fear, normally low CORT) by exogenous CORT (3 mg/kg) and decreased in PN12 pups (express fear, CORT levels higher) through adrenalectomy and CORT replacement. Results showed that PN8 expression of fear to a predator odor and basolateral/lateral amygdala activity could be prematurely evoked with exogenous CORT, while adrenalectomy in PN12 pups prevented both fear expression and amygdala activation. These results suggest that low neonatal CORT level serves to protect pups from responding to fear inducing stimuli and attenuate amygdala activation. This suggests that alteration of the neonatal CORT system by environmental insults such as alcohol, stress and illegal drugs, may also alter the neonatal fear system and its underlying neural control.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Developmental Neurobiology of the Rat Attachment System and Its Modulation by Stress

Stress is a powerful modulator of brain structure and function. While stress is beneficial for survival, inappropriate stress dramatically increases the risk of physical and mental health problems, particularly when experienced during early developmental periods. Here we focus on the neurobiology of the infant rat's odor learning system that enables neonates to learn and approach the maternal o...

متن کامل

Dual circuitry for odor-shock conditioning during infancy: corticosterone switches between fear and attraction via amygdala.

Rat pups must learn maternal odor to support attachment behaviors, including nursing and orientation toward the mother. Neonates have a sensitive period for rapid, robust odor learning characterized by increased ability to learn odor preferences and decreased ability to learn odor aversions. Specifically, odor-0.5 mA shock association paradoxically causes an odor preference and coincident failu...

متن کامل

Enduring Neurobehavioral Effects of Early Life Trauma Mediated Through Learning and Corticosterone Suppression

Early life trauma alters later life emotions, including fear. To better understand mediating mechanisms, we subjected pups to either predictable or unpredictable trauma, in the form of paired or unpaired odor-0.5 mA shock conditioning which, during a sensitive period, produces an odor preference and no learning respectively. Fear conditioning and its neural correlates were then assessed after t...

متن کامل

Intergenerational transmission of emotional trauma through amygdala-dependent mother-to-infant transfer of specific fear.

Emotional trauma is transmitted across generations. For example, children witnessing their parent expressing fear to specific sounds or images begin to express fear to those cues. Within normal range, this is adaptive, although pathological fear, such as occurs in posttraumatic stress disorder or specific phobias, is also socially transmitted to children and is thus of clinical concern. Here, u...

متن کامل

Stress inhibits the proliferation of granule cell precursors in the developing dentate gyrus.

The granule cell population of the dentate gyrus is produced predominantly during the postnatal period in rats. Previous studies have shown that experimental increases in the levels of adrenal steroids suppress the proliferation of granule cell precursors during the first postnatal week, the time of maximal neurogenesis in the dentate gyrus. These findings raise the possibility that stressful e...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • International journal of developmental neuroscience : the official journal of the International Society for Developmental Neuroscience

دوره 22 5-6  شماره 

صفحات  -

تاریخ انتشار 2004